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We present a concept and experimental proof of principle for split-gate devices for indirect exci-

tons (IXs). The split-gate forms a narrow channel, a point contact, for IX current. Control of IX

flow through the split-gate with both gate voltage and excitation power is demonstrated. Published
by AIP Publishing. https://doi.org/10.1063/1.5021488

Split-gates can be utilized for creating and controlling

narrow channels (quantum point contacts) for electrons in

mesoscopic electronic devices. Studies of electronic split-

gate devices have led to a number of findings including elec-

tron focusing,1–4 conductance quantization,5,6 electron beam

collimation,7–9 and electron flow branching.10,11

In this work, we present a concept and proof-of-principle

experiments with split-gate devices for indirect excitons (IXs).

An IX is a bound pair of an electron and a hole in spatially sep-

arated layers, which can be realized in coupled quantum well

(CQW) structures [Fig. 1(a)]. Due to several advantageous

properties, IXs form a system that can be used to explore trans-

port of cold bosons through split-gate devices, providing a

counterpart to the many transport studies of cold fermions

through electronic split-gate devices. These properties include

the following: (i) IXs have built-in dipole moments ed, allow-

ing the control of IX energy by voltage, where the IX energy

shifts as dE ¼ �edFz (d is the separation between the electron

and hole layers, and Fz is the voltage controllable electric field

in the structure growth direction). Various in-plane potential

landscapes formed by voltage for IXs were studied in earlier

works, including excitonic ramps,12–14 static15–19 and moving20

lattices, traps,21–26 and transistors.27 (ii) Long IX lifetimes

allow them to travel long distances in mesoscopic devices

before recombination.12–14,18–20,27 (iii) Long IX lifetimes also

allow effective IX thermalization with the crystal lattice,28 giv-

ing the opportunity to study IX transport through mesoscopic

devices in the quantum regime below the temperature of quan-

tum degeneracy.

An excitonic split-gate device is formed by two electro-

des: a large electrode [shown in blue (dark) in Fig. 1(b)] and

a split-gate electrode [shown in gray in Fig. 1(b)]. Voltage Ve

on the large electrode realizes the indirect regime in which

IXs form the lowest energy state with energies below the

energy of spatially direct excitons (DXs), which is also

shown in Fig. 1(a). Gate voltage Vg on the split-gate elec-

trode creates a narrow channel for IXs [Figs. 1(c)–1(f)]. The

design of the IX split-gate device is similar to the design of

electronic split-gate devices in semiconductor structures.4–11

A difference is in the presence of the large electrode, which

is needed to implement the indirect regime for IX devices.

This large electrode is separated from the split-gate electrode

by a narrow opening. We note that in some IX CQW

samples, e.g., in GaAs/AlAs CQW samples studied in Refs.

12, 17, and 21, the indirect regime is realized at Ve ¼ 0.

Therefore, these samples do not require a large electrode

and, in turn, the narrow opening between it and the split-gate

electrode, making the device design simpler.

The electric field Fzðx; yÞ and resulting IX potential

energy Ubareðx; yÞ ¼ �edFzðx; yÞ for the bare, unscreened,

split-gate device were modeled by numerically solving

Poisson’s equation (note that the split-gate potential land-

scape and, in turn, w are affected by IX screening, which is

discussed below). Cross-sections of IX energy profiles at the

split-gate position are shown in Fig. 1(c) for different Vg val-

ues. The IX energy is given relative to the energy of IXs far

from the split-gate electrode, as determined by Ve on the

large electrode.

The channel width w for transport of IXs with energy E
(relative to the IX energy in a bare device away from the

split-gate) is controlled by Vg. This is illustrated in Fig. 1(d)

for a bare potential for several E values. The control of the

split-gate channel by voltage provides control of IX current

passing through. At low temperatures, E is determined by IX

interaction. IXs are oriented dipoles and interact repulsively

with the interaction energy on the order of meV for typical

IX densities.19,29 The IX interaction energy for IX split-gate

devices is analogous to the electron Fermi energy for elec-

tronic split-gate devices.

Figures 1(e) and 1(f) present 3D images illustrating IX

transport through a split-gate. IXs are generated by laser

excitation on one side of the split-gate device [laser excita-

tion centered around y¼�5 lm is shown in Fig. 1(f)] and

travel to the other side through the split-gate. This geometry

corresponds to the experiments described below.

In the CQW structure grown by molecular beam epi-

taxy, an nþ-GaAs layer with nSi ¼ 1018 cm�3 serves as a

homogeneous bottom electrode. Two 8 nm GaAs QWs are

separated by a 4 nm Al0.33Ga0.67As barrier and positioned

0.1 lm above the nþ-GaAs layer within an undoped 1 lm

thick Al0.33Ga0.67As layer. The QWs are positioned close to

the homogeneous bottom electrode to suppress the in-plane

electric field,17 which could otherwise lead to IX dissocia-

tion.15 The top semitransparent electrodes are fabricated by

applying 2 nm Ti and 7 nm Pt.

IXs were generated by a 633 nm HeNe laser focused to a

spot with a full width half maximum of �5 lm. Exciton pho-

toluminescence (PL) was measured using a spectrometer anda)Electronic mail: cdorow@physics.ucsd.edu

0003-6951/2018/112(18)/183501/4/$30.00 Published by AIP Publishing.112, 183501-1

APPLIED PHYSICS LETTERS 112, 183501 (2018)

https://doi.org/10.1063/1.5021488
https://doi.org/10.1063/1.5021488
mailto:cdorow@physics.ucsd.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5021488&domain=pdf&date_stamp=2018-04-30


a liquid nitrogen cooled charge coupled device camera

(CCD). The spatial x–y IX PL pattern was measured using

the CCD after spectral selection by an 800 6 5 nm interfer-

ence filter chosen to match the IX energy. As a result, the

low-energy bulk emission, higher-energy DX emission, and

scattered laser light were effectively removed and the IX PL

images were visualized. Experiments were performed in an

optical helium cryostat at a bath temperature of Tbath

¼ 1.7 K.

Experimental proof of principle for the IX split-gate

device is shown in Fig. 2. IXs are photogenerated on one

side of the split-gate [the laser is positioned at (0, �4 lm) in

Fig. 2], and their transport through the split-gate is detected

by measuring the spatial pattern of the IX emission. The

rows in Fig. 2(a) and Figs. 2(b) and 2(d) show control of IX

transport through the split-gate by gate voltage Vg for a fixed

laser excitation power P. Increasing the channel width w by

voltage enhances the IX flux through the split-gate.

The columns in Fig. 2(a) and Figs. 2(c) and 2(e) show

control of IX transport through the split-gate by laser excita-

tion power P for a fixed gate voltage Vg. Increasing IX den-

sity by excitation power enhances the IX flux through the

split-gate. This is described in terms of screening below.

We simulated IX transport through the split-gate in the

diffusive regime corresponding to the proof of principle

experiments shown in Fig. 2. This regime is characterized by

the mean free path small compared to the device dimensions.

The following nonlinear partial differential equation was

used to model IX transport through the split-gate:

r � Drnþ lnrðu0nþ UbareÞ½ � þ K0 �
n

s
¼ 0: (1)

The first term in square brackets in Eq. (1) accounts for IX dif-

fusion, n is the IX density, and D is the IX diffusion coefficient.

The second term accounts for IX drift due to the dipole-dipole

IX interaction, which is approximated by the plate capacitor

formula u0n ¼ 4pe2d
e n, e is the dielectric constant,29 and due to

the split-gate potential, Ubareðx; yÞ ¼ �edFzðx; yÞ. The IX

mobility l is given by the Einstein relation l¼D/(kB T). The

effect of in-plane disorder intrinsic to QWs is approximated

using a “thermionic model” for the diffusion coefficient,

D ¼ Dð0Þ expð�Udis=ðkBT þ u0nÞÞ.29 Dð0Þ is the diffusion

coefficient in the absence of QW disorder, and Udis=2 is the

amplitude of the disorder potential. The temperature of IXs T is

approximated as T¼Tbath. The non-resonant photoexcitation

causes heating of the IX gas by a few Kelvin. However, the hot

IXs cool to the lattice temperature within a few microns of the

excitation spot,30 justifying the approximation. The last two

terms in Eq. (1) account for the creation and decay of IXs.

K0ðx; yÞ is the IX generation rate and s is the IX lifetime.

Simulations (Fig. 3) qualitatively reproduce the control of

IX transport through the split-gate both by voltage Vg [com-

pare Fig. 2(b) with Fig. 3(a) and Fig. 2(d) with Fig. 3(b)] and

by excitation power P [compare Fig. 2(c) with Fig. 3(c) and

Fig. 2(e) with Fig. 3(d)]. The data are discussed below.

Increasing the absolute value of gate voltage Vg increases

the channel width w at the IX energy and also reduces the bar-

rier height [Fig. 1(c)]. As a result, IX transport through the

split-gate is controlled by gate voltage Vg [rows in Fig. 2(a)

and Figs. 2(b), 2(d), 3(a), and 3(b)]. The dependence on volt-

age in simulations is presented by the dependence on the

height of the bare barrier away from the channel Abarrier [e.g.

Abarrier ¼ 3 meV corresponds to Vg ¼ 5.1 V, see Fig. 1(c)].

Increasing IX excitation power P increases IX density n.

This causes screening of the split-gate potential by IXs,

increasing the channel width and reducing the barrier for IX

transport through the split-gate [Figs. 3(e) and 3(f)].

Increasing n also causes screening of disorder as IXs interact

FIG. 1. (a) CQW band diagram. The

ovals indicate a direct exciton (DX)

and an indirect exciton (IX) composed

of an electron (e) and a hole (h). (b)

Schematic of the excitonic split-gate

device. (c) Simulated bare constriction

energy profiles for different split-gate

voltages Vg for fixed voltage on the

large electrode, Ve ¼ 5:5 V. (d) The

corresponding constriction width w for

IXs with different energies of E¼ 0.5

(black), 0.7 (red), and 1 meV (blue) vs

Vg. (e) Simulated IX potential energy

in the bare split-gate device. (f)

Simulated IX PL in potential of (e).
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repulsively. Screening of the split-gate potential and disorder

increases IX transport through the split-gate [columns in Fig.

2(a) and Figs. 2(c), 2(e), 3(c), and 3(d)].

Note that in the experiment, the peak of the PL does not

correspond to the peak of the laser. This feature is related to

the inner ring effect caused by PL suppression in the region

of the laser excitation spot due to temperature enhance-

ment.30 This effect is not observed in the simulations, where

the IX temperature is approximated as T¼ Tbath.

An interesting regime for electron transport through

electronic split-gates is the regime of quantum ballistic trans-

port, where the mean free path and Fermi wavelength exceed

the device dimensions. This regime is realized for electronic

split-gate devices in high-quality semiconductor structures at

low temperatures.4–11

For excitonic devices, at low temperatures (T � 0.1 K,

achievable in dilution refrigerators28,31), the IX coherence

length in a coherent IX gas in high-quality CQW semicon-

ductor structures reaches �10 lm,31 exceeding the dimen-

sions of the split-gate channel (Fig. 1), IX interparticle

separation (�0.1 lm for a typical IX density of 1010 cm�2),

and IX thermal de Broglie wavelength (�0.5 lm for an IX

temperature of T¼ 0.1 K). This indicates the feasibility of

the realization of IX quantum ballistic transport through

excitonic split-gate devices at low temperatures. The realiza-

tion of this regime forms the subject for future works.

We note that excitonic split-gate devices allow imaging

IX current paths after spatially localized IX injection.

Therefore, besides giving the opportunity to extend studies

of narrow-channel phenomena in fermions1–11 to bosons, IX

split-gate devices can also be used as a tool to probe direc-

tional effects in transport of composite bosons, including the

predicted exciton Hall effect32 and exciton spin Hall effect.33

Excitonic split-gate devices can also be used for studying

transport of composite particles through narrow channels.34

In conclusion, we presented a concept and experimental

proof of principle for split-gate devices for indirect excitons.
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