Spontaneous coherence in a cold exciton gas

Alex High, Jason Leonard, Aaron Hammack, Sen Yang, Misha Fogler & Leonid Butov *University of California at San Diego*

> Tomas Ostatnický *Charles University in Prague* Masha Vladimirova *Université Montpellier*

Alexey Kavokin University of Southampton

en Campman & Art Gossard versity of California at Santa Barbara

An Introduction to Indirect Excitons

 An indirect exciton is composed of an electron and hole in separate quantum wells

Characteristics of indirect excitons
 long lifetime
 bosons

model system for studies of physics of ultracold bosons in CM materials

QM1G.7: Yuliya Kuznetsova Transport of Indirect Excitons in a Potential Energy Gradient Monday, 9:45 AM

QM2G.7: Mikas Remeika Electrostatic Lattices for Indirect Excitons in Coupled Quantum Wells Monday, 12:15 PM QTu3D.3: Alex High Spontaneous Coherence of Indirect Excitons in a Trap Tuesday, 5:15 PM

Onset of Quantum Degeneracy

 "Quantum gas" when thermal de Broglie wavelength comparable to separation between excitons

$$\lambda_{\rm dB} = n^{-1/2} \longrightarrow T_{\rm dB} = \frac{2\pi\hbar^2}{mk_{\rm B}} n$$

$$\lambda_{\rm dB} = \left(\frac{2\pi\hbar^2}{mk_{\rm B}T}\right)^{1/2}$$

• Excitons in GaAs CQW: $n = 10^{10} \text{ cm}^{-2}$, $m_{\text{exciton}} = 0.2 \text{ m}_0$

 $\rightarrow T_{dB} \sim 3 \text{ K}$

 Excitons can cool to 100mK within lifetime

L.V. Butov, A.L. Ivanov, A. Imamoglu, P.B. Littlewood, A.A. Shashkin, V.T. Dolgopolov, K.L. Campman, and A.C. Gossard, *Phys. Rev. Lett.* **86**, 5608 (2001)

Prior Evidence for Exciton Condensation

Coupled Quantum Wells

• enhancement of radiative decay rate with decreasing temperature

L.V. Butov and A.I. Filin, Phys. Rev. B 58, 1980 (1998)

Bilayer Quantum Hall Layers

• enhancement of tunneling rate with decreasing temperature

I. B. Spielman, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, *Phys. Rev. Lett.* **84**, 5808 (2000).

• enhancement of scattering rate with increasing density

L.V. Butov, A.L. Ivanov, A. Imamoglu, P.B. Littlewood, A.A. Shashkin, V.T. Dolgopolov, K.L. Campman, and A.C. Gossard *Phys. Rev. Lett.* **86**, 5608 (2001).

• enhancement of coherence length with decreasing temperature

Sen Yang, A.T. Hammack, M.M. Fogler, L.V. Butov, and A.C. Gossard, *Phys. Rev. Lett.* **97**, 187402 (2006)

Shift-Interferometry with M-Z interferometer

Shift interferometry directly measures the first order spatial coherence function $g_1(x)$

Exciton Pattern Formation

L.V. Butov, A.C. Gossard, & D.S. Chemla, Nature 418, 751(2002)

Sources of cold excitons: External ring LBS ring

electrons

excitons holes

LBS ring is close to model radial source of cold excitons

Observation of Spontaneous Coherence

- Spontaneous coherence in regions of LBS and external ring
- Phase jumps, forks

Offset Dependence of Ainterf

- At hot LBS center, A_{interf} decays quickly
 →classical
- Away from LBS center A_{interf} decays slowly →condensate

- in cold region spontaneous coherence with coherence length $\xi \approx 8 \ \mu m$
- $\xi_{\text{classical}} \approx 0.3 \,\mu\text{m at } 0.1\text{K}$

 $\xi >> \xi_{classical} \rightarrow direct measurement of a condensate$

Temperature Dependence of Coherence

Coherence emerges at low temperature

Phase Singularities in Interference Pattern

• Phase singularities appear at low temperature in a coherent exciton gas

Ring-shaped source \rightarrow interference pattern with left- and right-facing forks with distance between them >> shift

Polarization of emission → Imaging of Spin Distribution

Real Space Image

Linear Polarization (*in-plane spin component*) *Circular Polarization* (*z*-axis spin component)

Linear Polarization → In-Plane Spin Pattern

T(K)

T (K)

- Close to source, hot → no long-range coherence, polarization ring
- Away from source, cold → exciton condensate, polarization vortex

Long Range Spin Pattern → Imaging of Spin Currents

polarization vortex

-0.3

-0.3

Conclusions

Observation of spontaneous exciton coherence:

- Extended coherence $\xi >> \xi_{classical}$ in polarization vortex and MOES .
 - Spin textures
 - Phase singularities in interference

A.A. High, J.R. Leonard, A.T. Hammack, M.M. Fogler, L.V. Butov, A.V. Kavokin, K.L. Campman & A.C. Gossard, Spontaneous coherence in a cold exciton gas, *Nature* **483**, 584–588 (29 March 2012)

Imaging and cont ²⁰ ²⁰ coheren ¹⁰ ¹⁰

- Detection by pc ^o
 resolved imagir₋₁₀
- Control by mag

Modeling

Ballistic exciton transport and spin precession \rightarrow vortex of linear polarization

Spin polarization texture

Fork-like dislocations in interference pattern

Ring-shaped source → interference pattern with left- and right-facing fork-like dislocations with distance between them >> shift

 both vortex, point source are characterized by spreading of particle velocities over all directions

Condensate Properties

- measured g₁ is convolution of real g₁ with the point spread function (PSF) of the optics
- deconvolution gives more accurate g₁
- momentum distribution n(k) is fourier transform of g1

- Classical gas: narrow g₁(r) and broad n(k)
 - $\xi_{classical} \sim \lambda dB \sim 0.5 \ \mu m at 0.1 \ K$

• n(0) << 1

Quantum gas: • extended $g_1(r)$ and narrow n(k)

- $\xi >> \xi_{classical}$
- $\delta k \ll \delta k_{classical}$
- n(0) ≈ 5000
 - →characteristic of a condensate

0.5

 $q (\mu m^{-1})$

1.0

0.0

0.0