Long-life emission in multi-layer van der Waals heterostructures

E. V. Calman, C. J. Dorow, M. M. Fogler, L. V. Butov

University of California at San Diego

а

S. Hu, A. Mishchenko, A. K. Geim

University of Manchester

Indirect excitons

Exciton: bound pair of an electron and a hole.

Indirect excitons: electron and hole are confined to spatially separated quantum wells. Properties:

bosons

- long and controllable lifetime _____ long-range exciton transport
 excitons screen disorder
- built-in dipole moment

d

GaAs

Indirect

 F_{z}

AlGaAs

Direct

►Z

Ε

Opto-Electronic Devices with Indirect Excitons

- Exciton devices for basic study
 - Artificial lattices
 - Traps
- Exciton circuit devices
 - Exciton transistors
 - Exciton ramps
 - Exciton conveyers (CCD)
 - Exciton memory cells
 - Exciton integrated circuit

Operation of exciton transistor and router

• For temperatures $k_B T \gtrsim E_{binding}$ excitons dissociate

P. Andreakou, S.V. Poltavtsev, J.R. Leonard, E.V. Calman, M. Remeika, Y.Y. Kuznetsova, L.V. Butov, J. Wilkes, M. Hanson, A.C. Gossard. Optically controlled excitonic transistor, *Appl. Phys. Lett.* 104, 091101 (2014).

GaAs/AIAs devices can operate up to ~100K

Grosso, et al., Nat. Photonics 3, 577 (2009).

Quantum Degenerate Gas of Indirect Excitons

- Basic studies of exciton transport, spin transport, correlation, coherence, condensation, strong magnetic field regime
- At $T \leq T_0 = \frac{2\pi\hbar^2 n}{m}$ excitons form a quantum degenerate gas of bosons
- GaAs strucures have shown spontaneous coherence of excitons at low temperatures around 1K

Regions of spontaneous coherence

High, et al. *Nature* 483, 584 (2012)

Indirect Excitons in van der Waals heterostructures

- Effective mass and small ε result in binding energy $E_{IX} \gg k_B T_{room}$ which keeps excitons bound at high temperatures
- Theory predicts superfluidity in a quantum degenerate exciton gas at high temperatures

Centre-to-centre distance (nm)

hBN layers

Fogler, Butov, Novoselov Nat. Commun. 5, 4555 (2014).

Indirect Excitons in Transition Metal Dichalcogenide Structures (TMD)

 Exciton binding energy is much greater than for GaAs and can support excitons up to room temperature and above

Control of Excitons in MoS₂

Calman, et al, APL 108, 101901 (2016).

- Exciting with circularly polarized light near exciton resonance produces polarized emission
- $\tau_{spin} > \tau_E$ for nearly resonant excitation because spin and valley indices are coupled

- Exciton emission at room temperature
- The relative intensity of the high-energy exciton lines increase with *T*, consistent with the thermal dissociation of trions due to their smaller binding energy

- The relative intensity of the trion line increases with power
- This effect may be due to an enhanced probability of trion formation at larger carrier density

New Sample Design for MoS₂-hBN-MoS₂

• New sample design can support higher \vec{E} than previous design

E. V. Calman, C. J. Dorow, M. M. Fogler, L. V. Butov, S. Hu, A. Mishchenko, A. K. Geim. Control of excitons in multi-layer van der Waals heterostructures, Appl. Phys. Lett. 108, 101901 (2016).

Long Life Emission from MoS₂-hBN-MoS₂ structures

- Emission persists after excitation pulse has ended
- Spectra measured after optical excitation(
 reveal long-life emission

 Lifetime of long-life emission line is ~10 ns, orders of magnitude longer than <u>1.8 ps for direct</u> <u>exciton in monolayer MoS₂</u>

Robert, C., et al. Phys. Rev. B 93, 205423 (2016).

Energy of the long-life
emission line is controlled
by voltage within ~100 meV

T=300 K

- Emission of long-life emission line is observed at room temperature
- Lifetime of ~30 ns

Conclusion

- Observed emission in a MoS₂ van der Waals heterostructure at both cryogenic and room temperatures with a lifetime orders of magnitude longer than for direct excitons in monolayer MoS₂
- Demonstrated control via gate voltage of the energy of a long-life emission line within ~100 meV

