Transport of Indirect Excitons in High Magnetic Fields

C.J. Dorow, Y.Y. Kuznetsova, E.V. Calman, and L.V. Butov Department of Physics, University of California at San Diego

> J. Wilkes and E.A. Muljarov School of Physics and Astronomy, Cardiff University

K.L. Campman and A.C. Gossard Materials Department, University of California at Santa Barbara

Indirect Excitons

These properties allow for:

- basic studies: exciton transport, spin transport, interaction, kinetics, coherence, condensation, composite bosons in strong magnetic field regime
- development of excitonic devices: excitonic transistors, traps, ramps, lattices, conveyers

High Magnetic Field Regime for Excitons

High magnetic field regime for composite bosons:

 $\hbar \omega_c \ge E_b$ cyclotron energy \ge binding energy

This requires:

~ 10⁶ Tesla for atoms

Only a few Tesla for excitons

due to large $\hbar\omega_c = \hbar eB/(\mu c)$ and small $E_b \approx (\mu e^4)/(2\epsilon^4 \hbar^2)$

because of small mass and $\varepsilon > 1$

High magnetic field regime for excitons is achievable in lab

UCSD optical dilution refrigerator

- 40 mK bath temperature
- 16 Tesla magnetic field

IXs are a model system for studying cold bosons in high magnetic fields:

High magnetic field regime for excitons is achievable in lab

Indirect Excitons in High Magnetic Fields

 $M = m_e + m_h$

٠

- dispersion determined by coupling induced by $r_{e,h} = k l_B^2$ magnetic field $l_B = (\hbar c/eB)^{1/2}$
- M depends on B, independent of m_e and m_h M(B) $\propto B^{1/2}$

Indirect Excitons in High Magnetic Fields

laser excitation centered at x = 0

Transport of 0e-0h IMX

0e - Oh IMX PL intensity enhanced outside the excitation spot → IMX inner ring

Transport of 0e-0h IMX

0e - 0h IMX transport length decreases with increasing magnetic field → IMX mass increase

Transport of 1e-1h and 2e-2h IMXs

1e - 1h and 2e-2h IMX transport distance is smaller than for 0e - 0h MX → energy relaxation

Transport of 0e-0h IMX vs Density

Numerical Simulations of IMX Transport

The exciton system was modeled by solving coupled differential equations:

drift-diffusion equation
$$\frac{\partial n}{\partial t} = \nabla D \nabla n + \mu_x n \nabla (u_0 n) + \Lambda - \frac{n}{\tau}$$

diffusion $\frac{\partial n}{\partial t} = \nabla D \nabla n + \mu_x n \nabla (u_0 n) + \Lambda - \frac{n}{\tau}$
exciton
generation $\frac{\partial n}{\partial t} = \nabla D \nabla n + \mu_x n \nabla (u_0 n) + \Lambda - \frac{n}{\tau}$
optical
generationheat balance equation $\frac{\partial T}{\partial t} = S_{pump} - S_{phonon}$
heating due to
laser excitation $cooling throughphonons$

In magnetic field:

• D and μ_x inversely proportional to MX effective mass, M(B)

Numerical Simulations of IMX Transport

Conclusion

Y. Y. Kuznetsova, C. J. Dorow, E. V. Calman, L. V. Butov, J. Wilkes, E. A. Muljarov, K. L. Campman, and A. C. Gossard, *Phys. Rev. B* 95, 125304 (2017)

