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Indirect Excitons

Exciton: bound electron-hole pair
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* Increased lifetimes and transport distances
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* Oriented dipoles == disorder screening

l

Indirect exciton energy controllable by
applied voltage: 8F = -edF,

0

Electrode voltage (V)



Excitonic Devices

Fundamental Physics

Exciton Lattices

Electrostatic traps
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Circuit Devices

Exciton transistors:
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Exciton ramp (diode)

P g T LT S, b 15 00 RN
SR AR '.‘:77%“:-;7”",,;’-.\9
Gy e L e

; p 2 4‘2‘3i3’u¢. Wl

J.R. Leonard et al, APL 100,
231106 (2012).

P
X —

Stirring potential
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Control of Excitons by Electrode Density

Advantage: suppression of heating by electric

electrode pattern at :
currents in electrodes

l—rx / uniform voltage
ZEQ
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\ e creating devices with low energy consumption
ground plane « studies of ultra-cold exciton gasses
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Earlier method: control of excitons by voltage gradient
shaping the top electrode can
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Directed Transport of Excitons

Energy profile:
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Ramp Created by Perforated Electrode Method

Electrode density modulation achieved with
a perforated electrode

>
Increasing Electrode density
Decreasing Exciton energy
18 meV
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Perforated electrode method

* Opportunity to create versatile
potential landscapes for
indirect excitons

e Create channels for directing
exciton fluxes with the

required geometry and energy
profile

* Exciton fluxes are not limited
by geometry

Energy profile
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Ramp Created by Perforated Electrode Method

Excitation 1\
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¢ Flat channel,
no preferred exciton transport direction
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A Similar to ring due to PL enhancement outside of excitation spot
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Observed exciton transport distance
increase with excitation power:

higher excitation power
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higher exciton density

better disorder screening
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longer transport distances



Numerical Simulations

The exciton system was modeled by solving coupled differential equations:

drift-diffusion equation V IDxVny|+ uxnxV (uonx + Ummp)] — Ny / Topt HA=0

heat balance equation

diffusion drift

Sphonon (To, T)|= Fpump (To, T, A, Einc)

optical exciton
decay  generation
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Control of Excitons: Perforated Electrode Method

Example:

Elevated trap potential created

Ramp: proof of principle demonstration by a perforated electrode

of perforated electrode method for
controlling exciton fluxes.
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Conclusion

We realized a linear potential energy gradient (ramp) for indirect
excitons using a perforated electrode at constant voltage.

The excitonic ramp realizes directed transport of excitons as a
diode realizes directed transport of electrons.

The ramp provides an experimental proof of principle for the
perforated electrode method of controlling exciton transport with
electrode density gradients.

The perforated electrode method is non-dissipative,

important for
— creating devices with low energy consumption
— studies of ultra-cold exciton gasses
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