Excitons in Electrostatic Lattices

M. Remeika¹, L.V. Butov¹, M. Hanson², A.C. Gossard²

¹University of California San Diego, Department of Physics ²University of California, Santa Barbara, Materials Department

APS March Meeting 2011

Indirect Excitons

Electrostatic Lattice for Indirect Excitons

Depth controlled in-situ by voltage

• High speed control

Structure determined by electrode pattern

- Arbitrary lattice structures
- Compatible with semiconductor processing technology

Exciton number controlled by laser power

• Selective loading to individual lattice sites

Other controlled parameters

- Interaction strength
- Effective mass
- Exciton lifetime
- Exciton temperature Excitons can cool down below temperature of quantum degeneracy

Another system with many controllable parameters: cold atoms in optical lattices

- Cold particles
- Tunable lattice depth
- Could emulate properties of condensed matter systems

Excitons in an Electrostatic Lattice

M. Remeika, J. C. Graves, A. T. Hammack, A. D. Meyertholen, M. M. Fogler, L. V. Butov, M. Hanson, A. C. Gossard *PRL*, 102,186803 (2009)

Two Dimensional Lattice Design

Two Dimensional Lattice Design

Method of Potential Control by Electrode Density Snowflake trap 5 um Parabolic⁻⁵ Potential Y.Y. Kuznetsova, A. A. High, V, L. V. Butov APL, 97, 201106 (2010)

Applied to a Lattice Potential:

- Lattice structure determined by electrode design
- Independently controlled lattice depth and base energy
- Electrode pattern fabricated in a single lithography step
 Exciton

Excitons in Electrostatic Lattices

Preliminary Data on Excitons in a 2D Lattice

Conclusions

- Developed a method to create 2D electrostatic lattices for excitons.
- Realized square, triangular, and honeycomb lattices.
- Analysis of exciton localization-delocalization transition as a function of exciton density and lattice amplitude is in progress.

