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We report on a method for the realization of two-dimensional electrostatic lattices for excitons
using patterned interdigitated electrodes. Lattice structure is set by the electrode pattern and depth
of the lattice potential is controlled by applied voltages. We demonstrate square, hexagonal, and
honeycomb lattices created by this method.VC 2012 American Institute of Physics.
[doi:10.1063/1.3682302]

Studies of particles in periodic potentials are fundamen-
tal to condensed matter physics. While originally experimen-
tal studies concerned electrons in crystal lattices, a variety of
systems with particles in artificial lattice potentials are
actively investigated at present. Controlling the parameters
of an artificial lattice provides a tool for studying the proper-
ties of particles confined to the lattice and, to some extent,
for emulating condensed matter systems. Cold atoms in an
optical lattice present a prominent example of particles in ar-
tificial lattices. Phenomena originally considered in context
of condensed matter systems, such as the Mott insulator–
superfluid transition, can be studied in the system of cold
atoms in optical lattices.1

Excitons in artificial lattices present a condensed matter
system of particles in periodic potentials.2–10 In particular,
artificial periodic potentials, both static and moving, can be
created for indirect excitons.2,3,6,10 An indirect exciton in
coupled quantum wells (CQW) is a bound state of an elec-
tron and a hole in separate QWs (Fig. 1(a)). Due to a dipole
moment of indirect excitons ed (d is close to the distance
between the QW centers), potential landscapes for excitons
E(x,y)¼ edFz(x,y)!V (x,y) can be created using a laterally
modulated gate voltage V (x,y) (Fz is the z-component of
electric field in the CQW layers).2,3,6,10–18 Furthermore, due
to their long lifetimes, orders of magnitude longer than that
of regular excitons, indirect excitons can travel in electro-
statically created potentials over large distances before
recombination.6,10,11,13,15–18 Also, due to their long lifetimes,
these bosonic particles can cool to temperatures well below
the temperature of quantum degeneracy.19 Therefore, the
system of indirect excitons in electrostatic lattices gives an
opportunity to study transport of cold bosons in periodic
potentials.

Lattice potentials with energy modulation in one dimen-
sion were created for indirect excitons by interdigitated
gates.2,6,10 However, a number of phenomena, including the
Mott insulator–superfluid transition, require in-plane energy
modulation in both dimensions.1 A two-dimensional (2D)
lattice for excitons can be generated by a single electrode
with a periodic array of holes.3 The lateral modulation of Fz,
which determines the lattice depth, can be controlled by

changing the voltage applied to the electrode. However,
within this method, changing the lattice amplitude is accom-
panied by changing the average electric field Favg

z and, in
turn, lifetime and density of indirect excitons. An independ-
ent control Favg

z and the lateral modulation of Fz can be real-
ized using multiple electrodes separated by insulating
layer(s).20 However, within this method, a considerable frac-
tion of the applied voltage may drop in the deposited insula-
tor. This fraction and, in turn, Fz(x,y) may depend on the
optical excitation.

Here, we present a method for creating 2D electrostatic
lattices for indirect excitons that utilizes variable electrode
density.21 We demonstrate that 2D lattices for excitons can
be produced by patterned interdigitated gates. The lattice
constant and lattice structure are determined by the electrode
pattern. Figures 1(c)–1(e) show the electrode patterns for
creating square, triangular, and honeycomb lattices, respec-
tively. The corresponding simulated exciton potential pro-
files are shown in Figs. 1(f)–1(h). The average field Favg

z and
spatial modulation of Fz can be independently controlled by
voltages V0 and DV. Favg

z realizes the indirect exciton regime
and controls the exciton lifetime. Modulation of Fz forms the
lattice potential (Fig. 1(b)). The lattice amplitude can be con-
trolled in situ by DV. The in-plane electric field in the lattice
Fxy is small so that it does not cause the exciton dissociation:
eFxyaB " Eex, aB# 20 nm and Eex# 4meV are the Bohr
radius and binding energy for the indirect excitons, respec-
tively22,23 (Fig. 1(b)).

Advantages of this method include (i) a variety of 2D
lattice structures for excitons can be realized; (ii) the depth
of the lattice potential can be controlled in situ by voltage;
(iii) the average field can be controlled by voltage independ-
ently from lattice depth; (iv) smooth 2D lattice potentials are
realized by the electrode patterns; and (v) the lattice device
can be fabricated using single layer lithography with no
deposited insulator layer.

We demonstrate experimental proof of principle for cre-
ating 2D lattices for excitons by this method. A square lattice
potential (Fig. 1(f)) is used for the demonstration. CQW
structure is grown by MBE. A nþ-GaAs layer with
nSi¼ 1018 cm%3 serves as a homogeneous bottom electrode.
Semitransparent top patterned electrodes are fabricated by
evaporating 2 nm Ti and 7 nm Pt. CQW with 8 nm GaAs
QWs separated by a 4 nm Al0.33Ga0.67As barrier are
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positioned 100 nm above the nþ-GaAs layer within an
undoped 1 lm thick Al0.33Ga0.67 As layer. Excitons are pho-
togenerated by a Ti:Sapphire laser tuned to the energy of
direct excitons in this sample (&786 nm). Exciton density is
controlled by the laser excitation power Pex. Photolumines-
cence (PL) images of the exciton cloud are captured by a
CCD with a filter selecting photon wavelengths
k¼ 8006 5 nm covering the spectral range of the indirect
excitons. The spectra are measured using a spectrometer
with resolution 0.18meV. Experiments are done at
Tbath¼ 1.6K.

Figures 2(a)–2(d) show the emission profiles for exci-
tons in a square lattice along x or y. Each point in the x-pro-
files is obtained by averaging over 5 lattice sites along y and
vice versa to reduce the noise in the data. Another source of
averaging is finite optical resolution, see below (note that
averaging reduced the amplitude of the spatial modulations
discussed below). The quantity !hx in Figs. 2(b) and 2(d)
stands for the spectral average !hx ¼ M1=I, where
I ¼

Ð
Ix0dx

0
is the total PL intensity and M1 ¼

Ð
Ix0!hx

0
dx

0

is its first spectral moment. As one can see in Fig. 2, both I
and !hx are modulated with the period matching the lattice
constant revealing the exciton confinement in the 2D lattice.
The intensity maxima match the energy minima demonstrat-
ing exciton collection in the lattice sites.

We also probe exciton transport in the lattice. Figures
2(e)–2(g) show spatial images of exciton PL at three differ-
ent lattice depths. As the lattice depth is turned up the exci-
ton cloud width becomes smaller and locations of the lattice
sites become apparent in the PL image. Figure 2(h) shows
the full width at half maximum (FWHM) of the exciton
cloud PL as a function of Pex for lattice depths El¼ 0 and
4.2meV. At low exciton densities, the emission spot is

essentially equal in size to the laser excitation spot indicating
that excitons are localized and do not travel outside the laser
excitation spot. At high exciton densities, the emission spot
is larger than the laser excitation spot indicating that excitons
are delocalized and travel outside the laser excitation spot
(Fig. 2(h)). In similarity to the localization-delocalization
transition studied in linear lattices,6 this behavior corre-
sponds to the exciton localization in the combined lattice
potential and disorder potential at low densities and exciton
delocalization due to screening of the potential by the repul-
sively interacting excitons (the amplitude of the disorder
potential in the sample is #0.6meV). Figure 2(h) shows that
a higher exciton density and, in turn, higher interaction
energy is required for screening the potential with a higher
lattice amplitude, in agreement with this model.

In order to examine this agreement quantitatively, we
considered a mean-field model6 where the local density n(r)
of bright excitons is the solution of the equation

eðnÞ ) Tlnð1% en=2!1TÞ ¼ EðrÞ þ c
!1

n% f: (1)

Here !1 ¼ m=ð2p!h2Þ is the density of states per spin, c is the
dimensionless interaction constant, f is the exciton electro-
chemical potential, and T is the exciton temperature. Within
this model, the first moment of the exciton emission energy
proves to be

M1 ¼ ðf% eÞnþ 2!1T
2Li2ðee=TÞ; (2)

where Li2(z) is the dilogarithm function. From these two
quantities, the local PL intensity and energy can be calcu-
lated. For a more accurate comparison with the experiment,
we also included the effect of the finite spatial resolution of

FIG. 1. (Color online) (a) Energy diagram of the
CQW. (b) Simulated electric field Fz and exciton
energy edFz along x (black) and y (red, gray in
print) for square lattice. Lower plot shows lateral
electric field Fr ¼ ðF2

x þ F2
yÞ

1=2 and eFraB. (c)–(e)
Electrode schematics for square, triangular, and
honeycomb lattices, respectively. (f)–(h) Simulated
exciton energy for these electrode patterns.
DV¼ 1V.
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our optical system, see supplementary information (SI).26

The choice of the parameters T¼ 3.6K, f¼ 5.0meV, and
c¼ 2.3 leads to a reasonable agreement between the simula-
tions (Fig. 3) and the experiment (Fig. 2).

Concluding the paper, we comment on the Mott insula-
tor (MI) to superfluid (S) transition. As described in SI
(Ref. 26), our system can be mapped to the Bose-Hubbard
model characterized by two parameters, the inter-site hop-
ping J and the on-site interaction U. These J and U can be
expressed in terms of the lattice amplitude El and the
“recoil” energy Er¼ h2/2mb2, where b is the lattice period
and m is the exciton mass. The incompressible MI state
exists at T¼ 0. However, a finite-T crossover boundary
between MI and normal (N) state can be defined.24 This
boundary as well as the S-N transition line25 are shown in
Fig. 4 for the case of one particle per site, !n ¼ 1.

If T is fixed but El increases, the system traces a certain
path in the phase diagram. Shown in Fig. 4 are the traces
computed for T¼ 0.80, 0.35, and 0.12 Er (top to bottom).
The MI-S transition is well resolved in the region somewhat
below the last path, i.e., at T. 0:1 Er, where the intervening
N domain is narrow. This condition can be met for experi-
mentally achievable parameters, e.g., b# 200 nm and
T. 50mK. Furthermore, the conditions for observing the
MI-S transition are less demanding in systems with large !n,
which are similar to Josephson junction arrays (see SI).
Demonstration of these transitions is a subject for future
study.

FIG. 2. (Color online) (a) PL intensity and (b)
energy of excitons in a square lattice along x
(black). The same data with a smooth curve sub-
tracted (red, gray in print). (c) and (d) Similar data
along y. Dashed lines are guides to the eye. Laser
spot FWHM is 17lm along x and 14lm along y.
Pex¼ 40lW, El¼ 4.2meV. (e)–(g) Exciton PL
images in a square lattice for Pex¼ 11lW at El¼ 0,
2.1, and 4.2meV, respectively. (g) FWHM of exci-
ton cloud emission along x for El¼ 0 (black) and
4.2meV (red, gray in print) vs Pex.

FIG. 3. (Color online) Simulations for a square lattice. (a) Exciton density.
Emission (b) intensity and (c) energy with averaging in y and accounting for
spatial resolution as in the experiment. El¼ 4.2meV, c¼ 2.3, T¼ 3.6K,
NA¼ 0.245.

FIG. 4. (Color online) Phase diagram of the Bose-Hubbard model with one
particle per site.24,25
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ELECTROSTATIC SIMULATIONS

The electrostatic potential Φ(r) in the system in the
absence of excitons was calculated numerically using
COMSOL Multiphysics 4.0 software package. The sys-
tem was modeled as a rectangular box 1µm thick in
the z direction and five or more lattice periods wide in
the x and y directions with the electrode pattern em-
bedded into the top surface of the box. The potential
was calculated by solving the Laplace equation in the
volume of the box. At the electrode surfaces the bound-
ary condition of constant potential was imposed, e.g., at
the ground plane (bottom surface) we have Φ = 0. At
all the other surfaces of the simulation box the condi-
tion of vanishing electric displacement was chosen. The
z-component of the electric field at 100 nm from the bot-
tom plane (corresponding to the location of the quantum
wells) was used to calculate the potential experienced
by excitons E(x, y) = edFz(x, y). Representative results
shown in Fig. 1b in the main text, indicate that for the
square-lattice case, the lattice potential can be modeled
by

E(x, y) = El

�
cos2

Qx + cos2
Qy

�
. (1)

Parameters El and b = π/Q define, respectively, the am-
plitude and the period of E(x, y).

The local-density approximation for the exciton den-
sity profile used in the main text is based on the assump-
tion that Q is small enough. The necessary condition is
Er < El, where Er is the “recoil” energy

Er =
�2

Q
2

2m
. (2)

In the experiments where El = 2–6 meV, b = 2µm, and
the exciton mass is m = 0.2 free electron mass, we have
Er = 0.5µeV, so that this condition is well satisfied.

BOSE-HUBBARD MODEL PARAMETERS

A generic model for lattice bosons is the Bose-Hubbard
model (BHM). The BHM Hamiltonian [4]

H = −J

�

�i, j�
c
†
i
cj +

U

2

�

i

c
†
i
ci(c†i ci − 1), (3)

(a) (b) (c)

(d) (e) (f )

FIG. 1. (color online) (a-c) Simulated exciton energy for square,
triangular, and honeycomb lattice. (d-f) SEM images of the
electrode patterns.

has two parameters: the nearest-neighbor hopping J and
the on-site repulsion U. The phase diagram of the BHM
is well known. The ground-state of the system is either
superfluid or Mott insulator. The latter is realized if the
average number of bosons per site n̄ is an integer and the
ratio U/J is large enough. The case of n̄ = 1 is illustrated
in Fig. 4 of the main text. The critical parameter ratio
is [1–3] (U/J)c = 16.7392; at large n̄, it increases according
to the scaling law (U/J)c ∝ n̄ [4].

We can establish an approximate relation between J

and U and the microscopic parameters of our exciton
system as follows. Parameter J determines the single-
particle bandwidth 8J in the BHM. In the continuum
model, the same quantity is determined by the actual
band-structure of the potential E(x, y). The lowest-
energy band, relevant for the case of n̄ = 1, can be derived
by the quasiclassical method [5], which yields

J � 4√
π

(ErE
3
l
)1/4 exp

�
−2
�

El/Er

�
. (4)

Parameter U represents the interaction energy of two ex-
citons confined to a single minimum of potential E(x, y).
For crude estimate, we replace E(x, y) by a parabolic po-
tential well of the same curvature and treat excitons as
bosons without any internal structure. The calculation
is simplified by the separation of the center-of-mass and
relative coordinates in the parabolic-well problem. It



2

leads to the following expression for the energy of two-
exciton system

ε = �ω0 + ∆ε , �ω0 = 2
�

ElEr , (5)

whereω0 is the oscillator frequency in the potential well.
The term ∆ε is the ground-state energy of a particle with
reduced mass m/2 subject to the axially symmetric po-
tential

V(r) = Vex(r) +
1
4

mω2
0r

2 . (6)

It is easy to see that for a short-range exciton interaction
potential Vex(r) we have U < 2�ω0. Indeed, for vanishing
Vex we get∆ε = �ω0 while for infinitely strong repulsion,
we get ∆ε = 3�ω0. The actual exciton interaction poten-
tial Vex(r) is close to the dipolar one Vex(r) ∝ 1/r3. Solving
for ∆ε numerically, we have found that the approxima-
tion

U = c1�ω0 , c1 ≈ 0.5 (7)

holds with 30% accuracy for a wide range of experimen-
tal parameters. The weak variation of U as a function of
these parameters is due to the slow logarithmic depen-
dence of the scattering phase shift in two dimensions [6].

Using Eqs. (4) and (7), we computed the J and U as a
function of El at three different temperatures and over-
layed the resultant dependence of T/J on U/J on the
BHM phase diagram [2, 3], see Fig. 4 of the main text.
These calculations indicate that the observability of the
Mott insulator-superfluid (MI-S) transition requires the
condition

T � 0.1Er (8)

to be met. The right-hand side of this inequality de-
pends primarily on the lattice period b. This condition
can be met e.g. for b ∼ 200 nm and T � 50 mK, show-
ing that the MI-S transition may be realized at experi-
mentally achievable conditions. This temperature is a
factor of ∼ 106 higher than the temperature needed to
observe the MI-S transition in cold atom systems where
Er ∼ 20 nK due to much heavier particle mass. Similarly,
the superfluid-normal (SN) transition temperature for
excitons is a factor of ∼ 106 higher than for the atoms.

A more practical route to realizing the MI-S transi-
tion for excitons is working with large n̄. The effective
Hamiltonian becomes [4]

H = − J∗
2

�

�i j�
cos(φi − φ j) +

U

2

�

i

n
2
i
, (9)

similar to that of Josephson junction arrays. Here the
phase operator φi is canonically conjugate to the occu-
pation number ni and J∗ ≈ Jn̄, i.e., it is much larger than
J. Parameter J itself is greatly enhanced compared to
Eq. (4) because the self-consistent screening of the lattice
potential (see the main text) reduces the potential barrier
for tunneling. As a result, the temperature range for ob-
servability of the transition can be expanded by orders
of magnitude.

OPTICAL RESOLUTION EFFECTS

The spatial resolution of the optical system is de-
scribed by its point spread function (PSF) P(r). We used
the following common model [7] for the PSF

P(r) =
�����

�
d

2
qΘ(Q − |q| ) e

iqr−iδ2
q

2/2
�����
2

. (10)

This PSF has a finite width determined by the length
scale Q

−1 ≡ λ/(2πNA) = 0.46µm set by the numerical
aperture NA of the system and by another length scale
δ ∼ 1µm that describes defocussing. The observable
intensity I(r) and its first spectral moment M1(r) were
calculated by taking the convolution of the PSF and the
“ideal” I and M1 derived from the mean-field theory
described in the main text.
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