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Indirect excitons

An exciton is a bound electron-hole pair.

Indirect excitons: e and h are confined to
spatially separated quantum wells.

Properties of indirect excitons:

• increased lifetime and transport distance

• oriented dipoles
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Excitonic devices
Electrostatic traps

for excitons
Electrostatic lattices

for excitons
Electrostatic conveyer

for excitons

Exciton transistors Exciton integrated
circuits
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New device:
Exciton ramp

(diode)
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New approach:  Control of excitons
by electrode density

electrode pattern at voltage

ground plane

<< D
δE = edFz

shaping the top electrode
reduce Fz due to fringing field

Exciton energy landscape is controlled by using
a single voltage on a single shaped electrode:
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Earlier realizations of
exciton ramps used
voltage gradients

Advantage:  suppression of heating by electric currents
                    in electrodes



Exciton ramps

-30 meV

-24 meV

Simulated energy profile

Measured energy profile

• Width of electrode varies
from 1 µm to 3 µm

• Electrode shape calculated to
give a linear potential energy
profile for excitons
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Exciton transport in a ramp

Flat channel:  exciton transport
symmetric about the excitation
spot

Flat channel Ramp

Ramp:  exciton transport only in the
direction of lower potential energy

realizes directed transport of
excitons as a diode realizes directed
transport of electrons.
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flow of excitons out of excitation spot 
due to exciton drift, diffusion, etc.
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Formation of the exciton inner ring

excitons cool as they travel away
from the excitation spot

increased occupation
of radiative zone

enhancement of PL intensity

inner ring

y

x 20 µm
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Eex = 1.588 eV
T = 1.5 K
excitation spot at x = 0 with
FWHM = 2.8 µm

Exciton inner ring
1.550 eV

1.545 eV

1.540 eV

1.535 eV

Pex = 0.5 µW     5 µW                  50 µW
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20 µm
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Exciton transport in a ramp

Flat channel:  exciton transport
symmetric about the excitation
spot

Flat channel Ramp

Ramp:  exciton transport only in the
direction of lower potential energy

realizes directed transport of
excitons as a diode realizes directed
transport of electrons.
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Density dependence of exciton transport in ramps

higher excitation power

higher exciton density

better disorder screening

longer transport distances

excitation
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Numerical simulations

diffusion drift

cooling through
phonons

heating due to laser

exciton
generation

optical
decay

The system was modeled by solving coupled differential equations:

drift-diffusion equation

and heat balance equation



Numerical simulations Experimental results
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Conclusions

• We realized a linear potential energy gradient (ramp) for
indirect excitons using a shaped electrode at constant voltage.

• The excitonic ramp realizes directed transport of excitons as a
diode realizes directed transport of electrons.

• We studied transport of indirect excitons along the ramp and
observed that the exciton transport distance increases with
increasing density and temperature.
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